Plasmon-Mediated Electron Transport in Tip-Enhanced Raman Spectroscopic Junctions.

نویسندگان

  • Partha Pratim Pal
  • Nan Jiang
  • Matthew D Sonntag
  • Naihao Chiang
  • Edward T Foley
  • Mark C Hersam
  • Richard P Van Duyne
  • Tamar Seideman
چکیده

We combine experiment, theory, and first-principles-based calculations to study the light-induced plasmon-mediated electron transport characteristics of a molecular-scale junction. The experimental data show a nonlinear increase in electronic current perturbation when the focus of a chopped laser beam moves laterally toward the tip-sample junction. To understand this behavior and generalize it, we apply a combined theory of the electronic nonequilibrium formed upon decoherence of an optically triggered plasmon and first-principles transport calculations. Our model illustrates that the current via an adsorbed molecular monolayer increases nonlinearly as more energy is pumped into the junction due to the increasing availability of virtual molecular orbital channels for transport with higher injection energies. Our results thus illustrate light-triggered, plasmon-enhanced tunneling current in the presence of a molecular linker.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy

The conductance of single-molecule junctions may be governed by the structure of the molecule in the gap or by the way it bonds with the leads, and the information contained in a Raman spectrum is ideal for examining both. Here we demonstrate that molecule-to-surface bonding may be characterized during electron transport by 'fishing-mode' tip-enhanced Raman spectroscopy (FM-TERS). This techniqu...

متن کامل

Biosensing Based on Surface-Enhanced Raman Spectroscopy by Using Metal Nanoparticles

Surface-enhanced Raman spectroscopy (SERS) is a promising tool in the analytical science because it provides good selectivity and sensitivity without the labeling process required by fluorescence detection. This technique consists of locating the target analyte on nanometer range of roughed Au-nanoparticles. The presence of the metal nanoparticles provides a tremendous enhancement to the result...

متن کامل

Comparative study of atomic force mode and tunneling mode tip-enhanced Raman spectroscopy

In Tip-Enhanced Raman Spectroscopy (TERS) a metal (or metallized) sharp tip is used to enhance the electromagnetic field by a localized surface-plasmon excitation. Two different modes – atomic force mode (AFM) and scanning tunneling mode (STM) – together with their respective types of probe tips are used in TERS experiments. We have compared the efficiency in enhancing the Raman signal on a thi...

متن کامل

In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy

With strong surface plasmons excited at the metallic tip, tip-enhanced Raman spectroscopy (TERS) has both high spectroscopic sensitivity and high spatial resolution, and is becoming an essential tool for chemical analysis. It is a great challenge to combine TERS with a high vacuum system due to the poor optical collection efficiency. We used our innovatively designed home-built high vacuum TERS...

متن کامل

Nanoscale spectroscopic imaging of organic semiconductor films by plasmon-polariton coupling.

Tip-enhanced near-field optical images and correlated topographic images of an organic semiconductor film (diindenoperylene, DIP) on Si have been recorded with high optical contrast and high spatial resolution (17 nm) using a parabolic mirror with a high numerical aperture for tip illumination and signal collection. The DIP molecular domain boundaries being one to four molecular layers (1.5-6 n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 6 21  شماره 

صفحات  -

تاریخ انتشار 2015